Hybrid spintronic/straintronics: A super energy efficient computing scheme based on interacting multiferroic nanomagnets

Please download to get full document.

View again

of 2
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Document Description
Hybrid spintronic/straintronics: A super energy efficient computing scheme based on interacting multiferroic nanomagnets
Document Share
Document Tags
Document Transcript
  2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO) The International Conference Centre Birmingham 20-23 August 20112, Birmingham, United Kingdom Hybrd spntronc/strantroncs: A super energy eficent computng scheme based on nteractng multferroc nanomagnets Jayasimha Atulasimha, and Supriyo Bandyopadhya/ IDepamen of Mechancal and Nuclea Engneeng, Vgna Commonwealh Unves, Rchmond, VA 23284, USA, Depamen of Eleccal and Compue Engneeng Vgna Commonwealh Unves Rchmond VA 23284USA Emal: jatulasimha@vcu.edu sbany@vcu.edu  - We have theoretically shown that multiferroic nanomagnets (consisting of a piezoelectric and a magnetostrictive layer) could be used to perform computing while dissipating -few 100 kT/bit at clock rates of -IGHz [1,2,3]. They can act as memory elements [2], binary logic gates [3, 4] and associative memory for four state logic [5, 6]. The latter enables signal processing functions such as ultrafast image reconstruction and pattern recognition [7]. This talk will provide an overview of our research in modeling stress induced nanoscale magnetization dynamics, its application to ultra low energy hybrid spintronic/straintronics memory and information processing, and discuss preliminary experimental work in fabrication and experimental demonstration of these devices. I       M . NTRODUCTION Excessve enegy dsspaon n CMOS devces dung swchng s he pma hea o connued downscalng of compung devces n accodance wh Mooe's law. Fuhemoe, hs lage powe consumpon mposes sevee consans on he lfespan of bae poweed sand-alone  hgh dens Applcaon Specc negaed Ccus (A SCs) fo moble devces (cell phones, hand held and  medcally mplaned pocessos). n he ques fo aleaves o adonal ansso based eleconcs, nanomagne-based compung and sgnal  pocessng ae emegng as and aacve aleave snce: () nanomagnes ae nnscally moe enegy-efcen han  anssos due o he  swchng of spns, and ()  unlke anssos, magnes suffe rom no leakage and hence  have no sandby powe dsspaon. Howeve,  nanomagnec logc (NML) has no dsplace ansso  echnology because he mehods employed o swch  magnes have been exemely neicen We have devsed a new nanomagne swchng scheme ha  we have emed     snce  s pedcaed on couplng beween magnec and mechancal degees of feedom. NML paadgms based on hs appoach  us ou o be oughly fou odes of magnude moe enegy-eicen han mode day CMOS and possbly ve odes moe enegy-efcen han ohe NML paadgms employng cuens o swch magnes ehe by geneang a  magnec eld o spn ansfe oque. L The cenal dea n ou appoach s o eplace an odna  magne wh a 2-phase mulfeoc and oae s  magnezaon hough a lage angle wh a ny volage of10 mV a oom empeaue [1, 2]. A schemac of a  mulfeoc nanomagne s shown n Fg. 1 and consss of a shape-ansoopc sucue (an ellpcal cylnde) made up of a pezoelecc laye elascally coupled wh an ovelyng  magneoscve laye. Magnezaon s oaed by applyng an elecc eld pependcula o he heeoneface beween  he pezoelecc and magneoscve laye. Ths eld sans he foe laye and ulmaely geneaes unaxal sess n he magneoscve laye f he layes ae  mechancally esaned rom expandng o conacng along he mno axs of he ellpse. Ths sess causes he  magnezaon oaon. Fg. 1: A 2-phase mulfeoc magne . HYBRID STINTRONIC/SPINTRONIC DEVICES Ths pesenaon wll summaze ou cuen eseach on devces based on he new hybd spnoncs and sanoncs swchng scheme descbed above. We wll show goously usng    ha: Ths wok s suppoed by he US Naonal Scence Foundaon unde he SHF-Small gan CCF-1216614 NEB 2020 gan ECCS-124714 and by he Sem conduco Reseach Copoaon (SRC) unde NR Task 2203.001. I The "all-spn-ogc" paadgm [S Snvasan, e a., EEE Tans. Magn., Vol. 47, 4026 (2011)] uses cuen nduced spn ansfe oque, bu s equally enegy-eicen as he scheme poposed hee owng o ve low essance n he  pahs of he cuens.  I The magnezaon sae of an solaed sngle doman  nonmagnec elemen shown n Fg I can be swched  elably [2] wh a sess cycle, even n he pesence of  hemal nose [8] . Thus,  can funcon as a memo elemen whch can be swched a � I GHz ae a oom  empeaue wh >99.99% elably whle dsspang � 100  kT [9] . 2. A logc b can be popagaed undeconally n a  nanomagnec we usng Benne clockng as shown n Fg 2 (let), whle dsspang � few 100 kT/b/magne a a clockng speed � I Gz [3]  A NAND gae wh fan-ou as shown n Fg 2 (gh), wh a houghpu of 0.5 GHz and laency 4ns can be mplemened [4] whle dsspang � 1000  kT/b fo he ene sub-ccu. Fg. 2: Benne clockng scheme fo popagang a b (let  All mulfeoc NAND gae fan-ou scheme (gh). 3 Baxal magneocsallne ansoopy n csallne  magnes can be exploed o mplemen fou sae logc ccus [5]. A scheme has been devsed fo popagang 4-sae logc bs [6] undeconally beween sages, and a 4-sae NOR gae [5] has been desgned as well, as shown n Fg 3 Such a 4-sae elemen can be used as assocave  memo fo ula-fas mage econsucon [7].  IH", 1° �: . i  , : -  ,  '. " 1ul  Fig 3: Fu- m wi bixi mg i i () Fu  gi gi d gi g (bm) 4. Fnally, we wll pesen pelmna expemenal wok o fabcae � 100 nm damee ellpcal sngle-doman  nanomagnes usng e-beam lhogaphy as shown n Fg 4. We wll also dscuss pelmna wok on fabcaon of  mulfeoc nanomagnec logc devces and sudyng he sess nduced swchng behavo wh magnec foce  mcoscopy. Fg. 4: Clockwse rom op let: Scannng elecon  mcogaphs of nckel nanodos on S subsae, magnec foce mcogaphs showng sngle doman saes, scannng elecon mcogaph of aays of nckel nanodos fo logc chans, aomc foce mcogaphs showng he absence of slandng n he nanomagnes.  ACKNOWLEDGMENT The auhos' sudens Noel D'Souza, Mohammed Saleh Fasham and Kunal Roy have conbued o he wok dscussed hee FEENCES [) J Atuasha and S. Bandyopadhyay, "Bennett cockng of nanomagnetc ogc usng mutferroc snge-doman nanomagnets", Appl. Phs. Lett .. 97 173105,20  0 [2] K. Roy, S. Bandyopadhyay and 1. Atuasha, ybrd spntroncs and strantroncs: A magnetc technoogy for utra ow energy computng and sgna processng, Appl. Phs. Lett. 99 063108, 20 . [3] M. S. Fasham, K.Roy, J Atuasmha and S. Bandyopadhyay, Magnetzaton dynamcs, Bennett cockng and assocated energy dsspaton n mutferroc ogc, Nanotechnoloy, 22 155201,2011. [4] M. S. Fasham, J Atuasmha and S. Bandyopadhyay, "Magnetzaton dynamcs, throughput and energy dsspaton n a unversa mutferroc nanomagnetc ogc gate wth fan-n and fan-out", Nanotechnoloy 23 105201,2012 .. [5] N. D'Souza, J, Atuasha and S. Bandyopadhyay Four-state nanomagnetc ogc usng mutferrocs,  Phs. D App. Phs. 44 265001,2011. [6] N. D'Souza, J Atuasmha and S. Bandyopadhyay, An energyeicent Bennett cockng scheme for 4-state mutferroc ogc, EEE Trans on Nanotechnoloy ,418,2012. [7] N. D'Souza, J Atuasha and S. Bandyopadhyay, "An utrafast energy-efcent mage reconstructor mpemented wth nanomagnets possessng baxa magnetocrstane ansotropy", arXv:  09.6932v, n press EEE Trans on Nanotechnoloy. [8] K. Roy, S. Bandyopadhyay and J Atuasmha, "Error-resent swtchng of a bstabe swtch wthout ntroducng asymetr n ts potenta proe", arXv: 11.5390v . [9] K. Roy, S. Bandyopadhyay and J Atuasmha, "Energy dsspaton and swtchng deay n stress-nduced swtchng of mutferroc devces n the presence ofthera luctuatons", arXv: 11 11.6129v , n-press  of App. Phs. 8--6-2200-/2/$00 ©202 IEEE
Search Related
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks