50 2,6-Dimethyl-1,4-benzoquinone 4-monooxime

Please download to get full document.

View again

of 4
5 views
PDF
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Document Description
50 2,6-Dimethyl-1,4-benzoquinone 4-monooxime
Document Share
Document Tags
Document Transcript
  electronic reprint         E G  2,6-Dimethyl-1,4-benzoquinone 4-monooxime Mustafa Odabas¸o ˇglu, C¸i ˇgdem Albayrak and Orhan B¨uy¨ukg¨ung  ¨or Copyright © International Union of CrystallographyAuthor(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or itsstorage in electronic databases or the like is not permitted without prior permission in writing from the IUCr. Acta Cryst. (2005). C 61 , o240–o242 Odabas¸oˇglu et al. ¯ C 8 H 9 NO 2  2,6-Dimethyl-1,4-benzoquinone4-monooxime Mustafa OdabasËogÆlu, a CËigÆdem Albayrak a and OrhanBuÈyuÈkguÈngoÈr b * a Department of Chemistry, Ondokuz Mayõs University, TR-55139 Samsun, Turkey,and b Department of Physics, Ondokuz Mayõs University, TR-55139 Samsun, TurkeyCorrespondence e-mail: orhanb@omu.edu.trReceived 4 January 2005Accepted 18 February 2005Online 11 March 2005 Molecules of the title compound, C 8 H 9 NO 2 , are linked intosheets by a combination of CÐH ÁÁÁ N, OÐH ÁÁÁ N and OÐH ÁÁÁ O hydrogen bonds and CÐH ÁÁÁ  interactions. Thehydrogen bonds are arranged as described by the graph-setring notations R 22 (7) and R 33 (5), and a C  8 chain motif. Thereare two planar symmetry-independent molecules in theasymmetric unit, with a dihedral angle of 19.24 (5)  betweentheir least-squares mean planes. Comment H-atom transfer in a hydrogen bond is an elementary processpresent in many systems of biological interest. Recently, manyexperimental and computational studies have addressed H-atom dynamics in hydrogen bonds (Yan et al  ., 2001; Mavri &Grdadolnik, 2001 a , b ; Rospenk et al  ., 2001; Dos Ï lc i et al  ., 2001).In addition, the quinone monooximate (nitroso) complexes of transition metals are of interest in respect of their structure,reactivity and possible application as starting reagents in thesynthesis of a wide variety of organic compounds (Kasumov et al  ., 2000). Quinone monooxime compounds are an example of systems possessing both intra- and intermolecular hydrogenbonds (Krz Ï an & Mavri, 2002). They are key reagents in theproduction of azo dyes. Since they are good complexingagents, they have found a place in many analytical, syntheticand other applications (Carugo et al  ., 1991; Shipmen et al  .,1955; Castellani & Millini, 1984; Verdoorn et al  ., 1994). Insolution, quinone monooximes generally exist as a mixture of quinone monooxime±nitrosophenol and ±nitrosonaphtholtautomers (see scheme).The nitroso±oxime tautomeric equilibrium has beenextensively studied by spectroscopic methods, including UV,IR and NMR techniques (Fischer et al  ., 1965; Enchev et al  .,1999; Ivanova & Enchev, 2001). The latter is a particularlypowerful method for studying the structure and dynamics of such hydrogen-bonded systems (Abilgaard et al  ., 1998). In theclassic study on nitrosophenols (Burawoy et al  ., 1955), it wasshown that, in solution, 2-nitrosophenol exists exclusively inthe phenolic form, while the 5-methoxy and 5-dimethylaminoderivatives are found in solvent-dependent equilibrium withtheir corresponding quinonoid forms. In general, it wasestablished that quinonoid forms are favoured in polarsolvents, while phenolic forms are favoured in non-polarsolvents (Krz Ï an et al  ., 2000). Generally, o -nitrosophenols existin the quinone monooxime form, while p -nitrosophenols existin the nitrosophenol form (Abilgaard et al  ., 1998; Krz Ï an et al  .,2000; Krz Ï an & Mavri, 2002). As we could not ®nd in theliterature any example of a solid-state compound in thequinone monooxime form, an X-ray structure determinationof the title compound, (I), was carried out and the results arepresented here.2,6-Dimethyl-1,4-benzoquinone monooxime, (I), wassynthesized according to the reaction mechanism in thescheme. In the structure of (I), there are two symmetry-independent molecules in the asymmetric unit (Fig. 1).Selected bond distances and angles (I) are listed in Table 1.Compound (I) possesses normal geometrical parameters and, organic compounds o240 # 2005 International Union of Crystallography DOI: 10.1107/S0108270105005500 Acta Cryst. (2005). C 61 , o240±o242 Acta Crystallographica Section C Crystal StructureCommunications ISSN 0108-2701 Figure 1 Aviewofthe twoindependent molecules of (I),with theatom-numberingscheme. Displacement ellipsoids are drawn at the 50% probability leveland H atoms are shown as small spheres of arbitrary radii. Dashed linesindicate the intermolecular hydrogen bonds. electronic reprint  as expected, is essentially planar [for the non-H atoms, thelargest r.m.s. deviations from the best least-squares plane are À 0.008 (2) AÊfor the C1±C6 ring and 0.024 (2) AÊfor the C9±C14 ring].The present determination reveals that compound (I) existsas the quinone±oxime tautomer in the solid state. This isevident from the relative contraction of the C1ÐO1, C4ÐN1,C2ÐC3 and C5ÐC6 bonds, and the relative elongation of theC1ÐC2, C3ÐC4, C4ÐC5, C1ÐC6 and N1ÐO2 bonds. Asimilar pattern of bond contractions and elongations was alsoobserved for the C9±C14 ring (Table 1). It should be notedhere that the tautomers of  o -benzoquinone monoxime havebeen investigated by Carugo et al  . (1991). The NÐO bonddistances in the o -benzoquinone monoxime and its nitroso-phenol tautomer are reported to be 1.378 and 1.200 AÊ,respectively. The corresponding values in (I) are 1.362 (3) AÊfor N1ÐO2 and 1.377 (2) AÊfor N2ÐO4, showing that bothmolecules are in the quinone monooxime form. The orienta-tions ofthemethylgroups arethoughttobedetermined bythesteric effects of the adjacent carbonyl groups. All the non-Hatoms in each molecule lie in the same plane, as shown by ther.m.s. deviations of 0.003 (2) and 0.003 (2) AÊfrom the corre-sponding least-squares mean planes.Further examination of non-bonded contacts also revealsfour intermolecular hydrogen bonds (Table 2). Hence, asshown in Fig. 1, asymmetric units of (I) are linked throughC11ÐH11 ÁÁÁ N1 and O2ÐH2 ÁÁÁ N2 hydrogen bonds, and thedihedral angle between the C1±C6 and C9±C14 rings is19.24 (5)  . The arrangement of the C11ÐH11 ÁÁÁ N1 and O2ÐH2 ÁÁÁ N2 hydrogen bonds can be described by the graph-setnotation R 22 (7). Other hydrogen bonds are arranged asdescribedby R 33 (5)anda C  8chainmotifinthe bc plane (Fig.2)(Bernstein et al  ., 1995).Stacking of the quinoid rings in (I) shows a Cg 1 ÁÁÁ Cg 1 i separation of 3.6375 (14) AÊ[ Cg 1 is the centroid of the C1±C6ring; symmetry code: (i) 12 + x , y , 12 À z ]. Experimental Amixtureof2,6-dimethylaniline (1.51 g,10 mmol),water(50 ml)andconcentrated hydrochloric acid (2.5 ml, 30 mmol) was heated withstirring until a clear solution was obtained. This solution was cooledto 273±278 K and a solution of sodium nitrite (0.96 g, 14 mmol) inwater was added dropwise. The resulting mixture was stirred for30 min at 278±288 K. The precipitated product was crystallized fromacetonitrile to obtain crystals of 2,6-dimethyl-1,4-benzoquinonemonooxime, (I) (m.p. 444±446 K). Crystal data C 8 H 9 NO 2 M  r  = 151.16Orthorhombic, Pbcaa = 7.2505 (7) AÊ b = 16.3379 (10) AÊ c = 26.4894 (17) AÊ V  = 3137.9 (4) AÊ 3 Z  = 16 D  x = 1.280 Mg m À 3 Mo K   radiationCell parameters from 7762re¯ections   = 1.5±25.9   = 0.09 mm À 1 T  = 296 KTetragonal prism, red0.30  0.17  0.09 mm Data collection Stoe IPDS-2 diffractometer ! scans20 873 measured re¯ections3089 independent re¯ections1718 re¯ections with I  > 2   (  I  ) R int = 0.062   max = 26.1  h = À 8 3 8 k = À 17 3 20 l  = À 32 3 32 Re®nement  Re®nement on F  2 R [ F  2 > 2   ( F  2 )] = 0.048 wR ( F  2 ) = 0.143 S = 0.873089 re¯ections198 parametersH-atom parameters constrained w = 1/[   2 ( F  o2 ) + (0.0913 P ) 2 ]where P = ( F  o2 + 2 F  c2 )/3( Á /   ) max < 0.001 Á  max = 0.31 e AÊ À 3 Á  min = À 0.27 e AÊ À 3 Extinction correction: SHELXL97  (Sheldrick, 1997)Extinction coef®cient: 0.0052 (11) organic compounds Acta Cryst. (2005). C 61 , o240±o242 OdabasËogÆlu et al.  C 8 H 9 NO 2 o241 Figure 2 A view of packing diagram of (I) along the a axis. Hydrogen bonds areshown as dashed lines. Table 1 Selected geometric parameters (AÊ,  ). C1ÐO1 1.238 (2)C1ÐC6 1.466 (3)C1ÐC2 1.469 (3)C2ÐC3 1.331 (3)C3ÐC4 1.430 (3)C4ÐN1 1.320 (3)C4ÐC5 1.440 (3)C5ÐC6 1.343 (3)C9ÐO3 1.231 (3)C9ÐC10 1.470 (3)C9ÐC14 1.480 (3)C10ÐC11 1.336 (3)C11ÐC12 1.448 (3)C12ÐN2 1.297 (2)C12ÐC13 1.443 (3)C13ÐC14 1.338 (3)N1ÐO2 1.362 (3)N2ÐO4 1.377 (2)C4ÐN1ÐO2 110.74 (18) C12ÐN2ÐO4 112.90 (16)C3ÐC4ÐN1ÐO2 179.1 (2)C5ÐC4ÐN1ÐO2 0.6 (4)C13ÐC12ÐN2ÐO4 À 1.1 (3)C11ÐC12ÐN2ÐO4 178.28 (19) Table 2 Hydrogen-bond geometry (AÊ,  ). D ÐH ÁÁÁ  A D ÐH H ÁÁÁ  A D ÁÁÁ  A D ÐH ÁÁÁ  A O2ÐH2 ÁÁÁ N2 0.82 2.06 2.862 (2) 164O4ÐH4 ÁÁÁ O1 i 0.82 1.84 2.643 (2) 164C3ÐH3 ÁÁÁ O3 ii 0.93 2.58 3.432 (3) 153C11ÐH11 ÁÁÁ N1 0.93 2.61 3.453 (3) 152 Symmetry code: (i) 1 À  x ;  y  12 ; 12 À z ; (ii) x À 12 ; 12 À  y ; 1 À z . electronic reprint  Methyl H atoms were located from difference Fourier synthesesand re®ned as part of a rigid rotating group, with CÐH = 0.96 AÊand U  iso (H) = 1.5 U  eq (C). Other H atoms were placed geometrically andre®ned using a riding model, with C  sp 2 ÐH = 0.93 AÊand U  iso (H) =1.2 U  eq (C).Data collection: X-AREA (Stoe & Cie, 2002); cell re®nement:  X-AREA ; data reduction: X-RED32 (Stoe & Cie, 2002); program(s)used to solve structure: SHELXS97  (Sheldrick, 1997); program(s)used to re®ne structure: SHELXL97  (Sheldrick, 1997); moleculargraphics: ORTEP-3 for Windows (Farrugia, 1997); software used toprepare material for publication: WinGX  (Farrugia, 1999). Supplementary data for this paper are available from the IUCr electronicarchives (Reference: BM1603). Services for accessing these data aredescribed at the back of the journal. References Abilgaard, J., Bolvig, S. & Hansen, P. E. (1998). J. Am. Chem. Soc. 120 , 9063±9069.Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34 , 1555±1573.Burawoy, A., Cais, M., Chamberlain, J. T., Liversedge, F. & Thompson, A. R.(1955). J. Chem. Soc. pp. 3727±3733.Carugo, O., Djinovic, K., Rizzi, M. & Castellani, B. (1991). J. Chem. Soc.Dalton Trans. pp. 1255±1258.Castellani, C. B. & Millini, R. (1984). J. Chem. Soc. Dalton Trans. pp. 1461±1462.Dos Ï lc i, N., Stare, J. & Mavri, J. (2001). Chem. Phys. 269 , 59±73.Enchev, V., Ivanova, G., Ugrinov, A. & Neykov, G. D. (1999). J. Mol. Struct. 508 , 149±161.Farrugia, L. J. (1997). J. Appl. Cryst. 30 , 565.Farrugia, L. J. (1999). J. Appl. Cryst. 32 , 837±838.Fischer, A., Golding, R. M. & Tennant, W. C. (1965). J. Chem. Soc. pp. 6032±6035.Ivanova, G. & Enchev, V. (2001). Chem. Phys. 264 , 235±244.Kasumov, V. T., Kartal, I. & Koksal, F. (2000). Spectrochim. Acta A , 56 , 841±850.Krz Ï an, A., Crist, D. R. & Hora k, V. J. (2000). Mol. Struct. (Theochem) , 528 ,237±244.Krz Ï an, A. & Mavri, J. (2002). Chem. Phys. 277 , 71±76.Mavri, J. & Grdadolnik, J. (2001 a ). J. Phys. Chem. A , 105 , 2039±2044.Mavri, J. & Grdadolnik, J. (2001 b ). J. Phys. Chem. A , 105 , 2045±2051.Rospenk, M., Sobczyk, L., Schah-Mohammedi, P., Limbach, H.-H., Golubev,N. S. & Melikova, S. M. (2001). Magn. Reson. Chem. 39 , S81±S90.Sheldrick, G. M. (1997). SHELXS97  and SHELXL97  . University of Go È ttingen, Germany.Shipmen, W. H., Foti, S. C. & Simon, W. (1955). Anal. Chem. 27 , 1240±1244.Stoe&Cie(2002). X-AREA (Version1.18)and  X-RED32 (Version1.04).Stoe& Cie, Darmstadt, Germany.Verdoorn, T. A., Johansen, T. H., Drejer, J. & Nielsen, E. O. (1994). Eur. J.Pharmacol. Mol. Pharmacol. Sect. 269 , 43±49.Yan, Z., Yeh, T.-F., Schmidling, D. G., Reiser, A., Mirau, P. A., S Ærubkova , L. &Zahradnik, R. (2001). Macromolecules , 34 , 2901±2907. organic compounds o242 OdabasËogÆlu et al.  C 8 H 9 NO 2 Acta Cryst. (2005). C 61 , o240±o242 electronic reprint
Search Related
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks